If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-150X+1350=0
a = 1; b = -150; c = +1350;
Δ = b2-4ac
Δ = -1502-4·1·1350
Δ = 17100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17100}=\sqrt{900*19}=\sqrt{900}*\sqrt{19}=30\sqrt{19}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-30\sqrt{19}}{2*1}=\frac{150-30\sqrt{19}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+30\sqrt{19}}{2*1}=\frac{150+30\sqrt{19}}{2} $
| 24.6=-4(x+5.3) | | -4(1+9x)=92 | | 3(x-1)=153x-3=15 | | 4÷5y=20 | | 5−–3v=20 | | (11x-10)/(4x-10)=0 | | 9j+3=9j | | -2+7f=10f+10 | | 4g-8=2g=16 | | n^2-2=62 | | 10-7h=h-6 | | -3x^2+6x+297=0 | | -9-9p=9-3p | | 10x-3=5-3x | | -9-9p=93p | | 12x+25=18x+10= | | 9x+7=4x+6 | | 0.2x+2.1×=4.6 | | 7b-1=-10+8b | | 7x-4=88 | | 6p+26=8p | | 10x+5=12x2+6x | | 3x−9=11 | | 5s-4=3s-2 | | 5x+3x=58 | | 7b−1=–10+8b | | 3t+7(2t-6)=2+14t | | 3(2a+5)+2(3-a);a=4 | | −0.5(−2x+8)+4=3. | | 21.2-x=-42.3 | | -14=21+c/11 | | 7.8d-7.82=-4+7.3d-3.72 |